音箱是音频回放系统中的终端器材,它大致上由喇叭单元、箱体和分频器所组成。其工作原理是将全频段声音通过分频器将声音信号分成频段,然后,再把这些若干个频段分配给相对应的驱动单元而发声。因此,在单元的工艺、分频器的调整、箱体的制作以及设计师对声音的审美能力等多方面的影响下,音箱有着不同的声音表现。而本文将对音箱的结构以及音箱的各个部件进行介绍,以便对读者们理解音箱的方方面面起到一定的帮助作用。
音箱的种类
对于目前市面上能够买得到的音箱来说,大部分都是由上述的三大部件所组成,这些音箱均需要外置一台放大器驱动才能工作,因此,它们又被称为被动式音箱,而被动式音箱也是目前市面上最常见且使用率最高的音箱之一。
除了被动式音箱外,还有一种自身内置电子分频器和放大器的主动式有源音箱,这种音箱的使用相对比较简便,用户只需要从CD机或前置放大器中给予其信号就能工作。
▲内置电子分频器和放大器的主动式有源音箱
所以,主动式的音箱现时被广泛应用于专业录音室和多媒体电脑之中。
此外,对于家庭影院系统来说,音箱还有偶极环绕音箱和超低音音箱这两种特殊用途的音箱,前者的发声方式通常都采用双面发声方式,它主要是通过反射声波来营造出环绕声效果。超低音音箱则用来增加低频能量来增强震撼的电影音效,同时又能补偿主音箱低频下限的不足,所以它可以视为音箱中极重要的一部分。
驱动单元
驱动单元,又称“喇叭单元”。它是音箱里面的重要组成部分之一,主要负责不同频率的声音重放。其工作原理是利用电能驱动喇叭振膜来推动空气,从而让人能听到声音。而驱动单元按照所负责的声音频率来划分,大致上可分为高音卑元、中音单元以及低音单元三种。
究竟为什么要把单元分成高、中、低三种单元来负责声音的重放呢?这是因为将声音分咸若干个频段并分别由多个单元负责,令每只单元只负责一部分的声音信号,能将音箱有效频率扩宽,同时又能增大输出声压和减低失真,从而达到高保真的声音重放。
▲扬声器
此外,驱动单元按照种类划分还可以分为球顶单元、锥盆单元以及号角单元(以市面上常见的类型为例)。接下来我们对这几种喇叭单元进行具体的介绍:
1.球顶单元:球顶单元是市面上最常见的高音喇叭单元之一,其中球顶单元的振膜面积比较小,所以质量轻且振动的速度快,而且扩散角度也比较大,所以通常用于高频段的重放。不过,也有少数的音箱生产商利用它来重放中频段的声音,当中最为发烧友们熟悉的就是英国ATC公司那只“馒头”中音,就是一只较为“另类”的球顶单元。
▲球顶式多用于制造高音单元
2.锥盆单元:锥盆单元相对于球顶单元来说,由于振膜的刚性好、强度高、指向性比较强,相比之下更适合用于中频或低频的重放。所以,我们通常都见到锥盆单元的振膜面积做得比较大,这样可以获得更大的空气推动量,从而获取更多的低频能量。
▲锥盆是中低音单元的常见形式
3.号角单元:号角单元由振动系统和号筒两部分构成,它出现的目的就是让声音传得更远和涵盖更宽广的范围,同时,这种设计还能有效地提高转换效率。所以,号角单元的灵敏度都很高。灵敏度越高就意味着喇叭只需输入很小的功率就能输出较大的声压,让所有声音细节无所遁形。同时由于放大器处于低功率状态下工作,那么失真率也会维持在一个较低的水平。
分频器、箱体及其结构类型
分频器
分频器也是音箱中另一个重要的部件,它主要的职责是将声音信号分成若干个不同频段的信号再分配给各个相应的喇叭单元。同时,还可以起到修正单元与单元之间的相位差以及灵敏度不一致等问题。因此,分频器设计的好坏直接影响着音箱的声音重放素质。
就目前来说,功率分频(LC分频网络)和电子分频是最为常用的分频方式。前者是采用电容、电感组成滤波网络,其特点是线路比较简单,使用比较方便,所以现在大部分的民用音箱都采用这种方式进行分频。但是,这种分频方式很容易会出现音频谷点,产生交叉失真,而且当分频器所涉及的“阶”数越多,线路就越复杂,所消耗的功率就会越大。此外,放大器需要在全频状态下工作,那么失真就自然会加剧。
▲采用功率分频的主动式音箱
电子分频器则主要用于专业扩声系统以及主动式音箱当中,位于前级放大器和后级放大器之间,它的工作方式是先将弱信号进行分频,分频后再使用各自独立的功率放大器进行放大,然后再驱动喇叭单元。
▲采用电子分频的主动式音箱
这种分频方式的优点是能很大程度地减少功率损耗的情况下将衰减斜率做得很陡,令单元与单元之间衔接更完美。此外,由于功率放大器不在全频放大的状态下工作,因此,对于功率放大器的输出功率要求相应降低,那么失真率也会大大减少。但是,电子分频器的线路结构比功率分频器要来得更加复杂,成本也相应提高。
箱体及其结构类型
不同的箱体结构和使用材料都会对声音构成直接性的影响。而以我们常见的音箱品牌之中,采用密闭式、倒相式、迷宫式结构音箱所占的比例最多。下面就对这几种常见的音箱结构分别进行介绍:
密闭式音箱(Closed Enclosure)是结构最简单的扬声器系统,1923年Frederick提出,由扬声器单元装在一个全密封箱体内构成,它能将扬声器的前向辐射声波和后向辐射声波完全隔离,但由于密闭式箱体的存在,增加了扬声器运动质量产生共振的刚性,使扬声器的最低共振频率上升。密闭式音箱的声色有些深沉,但低音分析力好,使用普通硬折环扬声器时,为了得到满意的低音重放,需要采用容积大的大型箱体,新式的密闭音箱利用封闭在箱体中的压缩空气质量的弹性作用,尽管扬声器装在较小的箱体中,锥盆后面的气垫会对锥盆施加反驱动力,所以这种小型密闭音箱也称气垫式音箱。
▲2.1多媒体音箱的卫星箱多采用密封式
低音反射式音箱(Bass-Reflex Enclosure)也称倒相式音箱(Acoustical Phase Inverter),1930年Thuras发明,在它的负载中有一个出声口开孔在箱体一个面板上,开孔位置和形状有多种,但大多数在孔内还装有声导管。箱体的内容积和声导管孔的关系,根据亥姆霍兹共振原理,在某特定频率产生共振,称反共振频率。扬声器后向辐射的声波经导管倒相后,由出声口辐射到前方,与扬声器前向辐射声波进行同相叠加,它能提供比密闭式音箱更宽的带宽,具有更高的灵敏度,较小的失真,理想状态下,低频重放频率的下限可比扬声器共振频率低20%之多。这种音箱用较小箱体就能重放出丰富的低音,是目前应用最为广泛的类型。
▲前倒相式音箱
声阻式音箱(Acoustic resistance Enclosure)实质上是一种倒相式音箱的变形,它以吸声材料或结构填充在出声口导管内,作为半密闭箱控制倒相作用,使之缓冲,以降低反共振频率来展宽低音重放频段。
传输线式音箱(Labyrinth Enclosure)是以古典电气理论的传输线命名的,在扬声器背后设有用吸声性壁板做成的声导管,其长度是所需提升低频声音波长的四分之一或八分之一。理论上它衰减由锥盆后面来的声波,防止其反射到开口端而影响低音扬声器的声辐射。但实际上传输线式音箱具有轻度阻尼和调谐作用,增加了扬声器在共振频率附近或以下的声输出,并在增强低音输出的同时减小冲程量。通常这种音箱的声导管大多折叠呈迷宫状,所以也称迷宫式或曲径式。
无源辐射式音箱(Drone Cone Enclosure)是低音反射式音箱的分支,又称空纸盆式音箱。是1954年美国Olson及Preston发表,它的开孔出声口由一个没有磁路和音圈的空纸盆(无源锥盆)取代,无源锥盆振动产生的辐射声与扬声器前向辐射声处于同相工作状态,利用箱体内空气和无源锥盆支撑元件共同构成的复合声顺和无源锥盆质量形成谐振,增强低音。这种音箱的主要优点是避免了反射出声孔产生的不稳定的声音,即使容积不大也能获得良好声辐射效果,所以灵敏度高,可有效减小扬声器工作幅度,驻波影响小,声音清晰透明。
▲无源辐射式低音炮(侧面为被动辐射器)
耦合腔式音箱是介于密闭式和低音反射式间的一种箱体结构,1953年美国Henry Lang发表,它的输出由锥盆一边所驱动的出声孔输出,锥盆另一边则与一闭箱耦合。这种音箱的优点为低频时扬声器所推动的空气量大大增加,由于耦合腔是个调谐系统,在锥盆运动受限制时,出声口输出不超过单独锥盆的声输出,展阔了低频重放范围,所以失真减小,承受功率增大。1969年日本Lo-D的河岛幸彦发表的A·S·W(Acoustic Super Woofer)音箱就是一种耦合腔式音箱,适于用小口径长冲程扬声器不失真重放低音。
号筒式音箱(Horn type Enclosure)对家用型来讲,多采用折叠号筒(Folded Horn)形式,它的号筒喇叭口在口部与较大空气负载耦合,驱动端直径很小,这种音箱的背面是全密封,箱腔内的压力都多至扬声器锥盆的背面上。为保锥盆前后压力保持平衡,倒相号筒装置于扬声器前面。折叠号筒音箱是倒相式音箱的派生,其音响效果优于密闭式音箱和一般低音反射式音箱。
除了音箱的结构对声音有影响外,箱体的材质也是相当重要的。因为在音箱设计师的眼中,一个理想的箱体是不能够因单元的振动而受到影响,那么才可杜绝箱体振动所带来的音染。但实际上,这种箱体是不存在的,因此我们只能尽可能抑制箱体振动。而设计师们也为求达到这个目的而想尽一切办法。当中最简单又便宜的方法就是采用MDF板或木材来制作箱体,然后在箱体内采用加强筋来加强箱体的强度以适当地降低音染。而对于某部分高级音箱厂家而言(如Wilson Audio、YG Acoustics)则采用金属作为箱体材料,而另外一些更“变态”的厂家还利用大理石夹制作箱体。
▲金属材质(铸铝)的箱体
但是使用金属或大理石所制作的箱体无论是工艺和成本都比MDF板和木材高出很多。同时,绝大部分的人总是听不惯低音染的声音,这是因为他们都认为适量的音染会令声音听起来更好听和更人性化。经过以上的介绍之后,相信读者们应该对现时市面上主流的音箱已有一定的了解。